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On surface biaxiality 

by PAOLO BISCARIf, GIANFRANCO CAPRIZT 
and EPIFANIO G. VIRGA*$ 

f Consorzio Pisa Ricerche, Piazza A. DAncona 1, 56127 Pisa, Italy 
$ Facolta di Ingegneria, Via Diotisalvi 2, 56126 Pisa, Italy 

(Received 14 April 1993; accepted 31 July 1993) 

We propose the following: on the boundary of a nematic liquid crystal, the 
function which describes the molecular orientation is subject to a further symmetry 
condition, besides that reflecting apolarity. This additional symmetry delimits a 
class of biaxial states; within that class we study a model problem for a thin layer in 
which the anchoring energy prevails over the elastic energy in the presence of an 
electric field. We show that, when the anchoring and electric energies favour 
uniaxial states with optic axes at right angles, the equilibrium configuration 
migrates from one state to the other, traversing a whole family of biaxial states as the 
strength of the electric field increases. 

1. Introduction 
Since biaxial states were first observed in lyotropic nematic liquid crystals by Yu 

and Saupe [I], there has been an increasing interest in theories fit to describe their 
behaviour. Besides theories employing methods of theoretical physics, such as those by 
Saupe [2], and Covers and Vertogen [3], others were proposed in the style of 
continuum mechanics, such as that by Kini [4], recently emended by Leslie, Laverty 
and Carlsson [ S ] .  

Our analysis here proceeds along the lines followed by Ericksen [6]; we describe 
biaxial states through an order tensor which reflects on a macroscopic scale the 
essential features of the statistical distribution of the rod-like molecules. Such a 
description applies to biaxial as well as to uniaxial states; thus it is especially expedient 
in the study of changes from one phase to the other. 

We recall that the order tensor, denoted here by M is obtained as follows. Resort to 
the usual picture of an element of the liquid crystal, an element consisting of a great 
many molecules. Let f be the probability density of the molecular orientations: f is 
thus defined on the unit sphere S 2 .  Then M is the symmetric tensor of the second 
moments of f  

M :  = f(l)I@l da, I d 2 .  (1.1) 

( 1.2) 
from this property and from the definition, it follows that M has real non-negative 
proper numbers and unit trace, so it can be given the form 

SS 

Because we take the molecules to be apolar, f must be even 
f ( 1 )  = f (  - I), for all I E S 2;  

3 3 

M =  A,n,@n,, C A , = l ,  AE20,  (1.3) 
i =  I 1= 1 

* Author for correspondence. 
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480 P. Biscari et al. 

where Ai are the proper numbers and ni the corresponding proper vectors. If, for some j, 
i l j + ,  = i l j + 2 ,  the sum of indices being defined modulo3, then M represents a uniaxial 
state, nj is the optic axis (denoted below by nE) and sE:=%3Lj-l) is the degree of 
orientation, as defined by Ericksen; M reduces to 

( 1.4) 

where I is the identity tensor. When, further, sE vanishes, M becomes spherical the 
liquid crystal melts and loses its optical anisotropy. 

Here we do not consider the general class of M shown by equation (1.3); rather, we 
restrict attention to a subclass, which includes, however, tensors M as in equation (1.4). 
The restricted biaxiality that we envisage could, in our opinion, be observed with 
relative ease, if properly sought: it should be induced by boundary anchoring even in an 
ordinary nematic, the states of which are mostly uniaxial in the bulk. 

To explain this idea, let us return to the usual picture of an element of liquid crystal 
placed at p .  We suggest that, when p is immediately adjacent to the boundary of the 
region occupied by the material, the functionfis forced to obey a further symmetry 
condition beyond (1.2), a condition which derives from the obstruction offered by the 
boundary. 

Precisely, let (el, e2, v)  be an orthogonal triad of unit vectors with v along the 
normal to the boundary. Let the orientation 1, be specified by 

M=s,nE@nE + ;( 1 - S E ) ~ ,  

1, = cos 6v + sin 8 cos cpe, + sin 0 sin cpe,, (1.5) 
where &[O,n[ is the tilt angle and cp~[O,2n[ is the twist angle. We presume that the 
probability of finding a molecule along 1, be equal to the probability of finding one 
along 

1, = cos 6v - sin 8 cos cpe, -sin 6 sin cpe,; 

R,: = ~ V @ V  - 1. 

(1.6) 

(1.7) 

f(R,I) = f(1) for all IE S 2; (1.8) 

1* is obtained from I, through a rotation R, of angle about v 

Thus, we formally require that f satisfy 

in other words, we extend to the projections of the peripheral molecules onto the plane 
tangent to the boundary the condition, valid in the bulk, of invariance under the 
reflection that exchanges the two ends of each molecule. 

We prove in the next section that equation (1.8) makes v a proper vector of M; thus 
we come to the special subclass, where one of the proper vectors n, in equation (1.3) is 
given a priovi. Each element of the class is singled out by assigning the values of three 
parameters only, just as many as are needed to represent a uniaxial state. Thus, if the 
material is uniaxial in the bulk, but biaxial on the boundary, the same number of 
parameters suffices to describe it throughout the region it occupies, though different 
subclasses of tensors M are involved at different points of the boundary, if the boundary 
is not plane. 

If a surface bounding a nematic can induce biaxiality, we think that the model 
outlined here may be fit to explain how it does. 

For a nematic liquid crystal uniaxial in the bulk, one would expect biaxiality to 
occur in a tiny layer all around the boundary, whereupon the tensor M has at each 
point the normal as proper vector. Biaxial states are indeed rarely observed in the bulk. 
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On surface biaxiality 48 1 

The unquestionable evidence that they occur may solely rest on the observation of 
defects that are not compatible with uniaxial symmetry: observations of truly biaxial 
defects in a conventional thermotropic polymer are reported by De'neve, KlCman and 
Navard [7]. 

To simplify matters, here we study a problem where the liquid crystal occupies a 
thin layer between two infinite parallel plates, so that the direction of the outer normal v 
be everywhere the same on the whole boundary. Thus, we can describe on both plates 
all biaxial states compatible with (1 3) through tensors M having the proper vector v in 
common. Using such a class of tensors throughout the whole layer, we can describe 
within it also the uniaxial states with optic axis either parallel or orthogonal to the 
bounding plates. 

More precisely, let (0, ex, e,,, e,) be a Cartesian frame; consider the cell represented 
by 

so that the plates that bound @ are, respectively, at z=O and z=d. On the former, 
following Nobili and Durand [S], we prescribe a weak anchoring, whose energy density 
is 

oA : = w, tr ((M - Mo)2), (1.10) 

where w,, is a positive constant and M, is a given member in the special class of biaxial 
order tensors considered here. No anchoring condition is prescribed on the latter plate. 

In the presence of an electric field, modulo an additive constant, we write the free 
energy density in the bulk as 

G,:=KIVM~* +v,(M)-E,E'ME, (1.11) 

where K is an elastic constant, E, is the dielectric anisotropy (both positive), and a, is a 
potential which we take as a function of the invariants of M. 

For simplicity, we assume that E is constant throughout 9# and that M depends 
only on z. Thus, the total free energy functional per unit area reduces to 

dM 
9;CMI: = 1: (~1x1 + a,(M) - E,E. ME dz + w,{tr (M - Mo)2}z=o. (1.12) 

To highlight the r61e played by the treated plate in inducing biaxility, we consider a 

Let 5 E [0,1] be the variable defined by z = 5d and change M(z) into @(t) = M(5d); 
limiting problem which arises when d is very small. 

the functional 9 becomes 

In the limit as d+O+, 4 may attain its minimum only if M(and so M) is constant within 
the layer, and so the functional in (1.12) reduces to an ordinary function. We neglect the 
potential a,, with respect to the electric energy density, as is appropriate for strong 
enough fields, since by equation (1.3) M is bounded (and so is a,(M)). Thus we are left 
with the problem of minimizing 

F[M] = w, tr ((M - Mo)2) - E, dE 0 ME, (1.14) 

a problem that is completely solved in $ 3  below. We anticipate here only one 
conclusion of our study: suppose that M,, the preferred state at the surface, be uniaxial 
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482 P. Biscari et al. 

with the optic axis nE on the plane of the plate and that the electric field E be on that 
plane also, but at  right angles with n,; the equilibrium configuration of the nematic will 
ultimately be uniaxial in the direction of E as the strength of the field increases, but a 
whole family of biaxial states comes first and a singularity occurs at a critical field, when 
the order tensor that minimizes the energy represents a conical state, that is uniaxial as 
in (1.4) with a negative degree of orientation. 

2. A simple class of biaxial distributions 
2.1. The tensor of second moments 

Here we explore the consequences of the additional symmetry (1.8) on the tensor M 
in definition (1.1). Such a definition is equivalent to 

M =  J R,IOR,I~(R,I )  
R,S2 

da; (2.1 ) 

or, since bothfand S 2  are invariant under R,, to 
n 

M =  J R,I@R,lf(l) da. (2.2) 
S2 

Thus we find that R, and M commute 

R,M = MR,.  (2.3) 
Applying either operator in equation (2.3) to the vector v, we see that M v  is a proper 
vector of R, with proper value 1; hence, necessarily, 

Mv = mv, (2.4) 
where m is an appropriate real number. We conclude that v is a proper vector of the 
tensor M. 

Choosing again an orthonormal basis and standard spherical coordinates as in 
equation (lS), we find that the components of M are 

where 

sin2 0 cos2 cpj-(e, cp) dR, 

sin2 8 cos cp sin r p f ( H ,  cp) dR, 

We must impose the condition that the proper numbers of M be not negative. The 
characteristic polynomial of M has the roots 

l -s ,ksp 
(2.7) 2 ’  

1,=s,, I ,= 
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On surjace biaxiality 483 

where we have introduced the parameter 

sP : = J[(2a - 1 + s , ) ~  +4b2]. 

Thus, equation (1 .3)3 implies that 

O b s v < l  and O ~ s p b l - s v .  (2.9) 
In tensor form, M can be written as 

3sv - 1 + sp l - S , - S  
I, 2 vOv+s,nOn + 2 M =  (2.10) 

where n : = (cos $, sin $, 0) is the proper vector of M associated with A+; the angle $ 
satisfies the equations 

sp cos 2$ = 2a - (1 - s,), 

s, sin 21) = 2b, 

which, when sp # 0, determine $ as follows: 

2b 
I) = + arctg 

2a- 1 +s,’ 

(2.1 1) 

(2.12) 

Thus, M is determined by three parameters, (a, b, s,) or (sv ,  sp, I)), and so it can be 
represented by a point in a three-dimensional state space. From both conditions in 
(2.9), we easily see that in this space the admissible region is the cone C shown in figure 
1. There the coordinate s, is a measure of the degree oftilt of the molecules: the vertex 
s, = 1 corresponds to a state completely ordered along v, while on the planes, = 0 lie all 
states where the molecules are at right angles with the normal v. 

The second condition in (2.9) together with the definition (2.8) show that the 
intersection of every horizontal plane s, = constant with C is a circle of radius 31 - s,) 

b l  
Figure 1. 
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484 P. Biscari et at. 

centred in the point with a =gl -sv) and b =O. Moreover, the distance of a point of this 
circle from the centre is equal to *sp, while the angle between the plane (a, s,) and the 
half-line from the centre through that point is 211/ (see figure 1). 

2.2. The uniaxial states 
As already mentioned, uniaxial states are characterized by a tensor M that has two 

equal proper numbers, and so they can be of three different families, which are 
illustrated in figure 2 and discussed in order below: 

(1) nE=v and 2- = A +  (that is, sp=O). M takes the form 

3sV- 1 1 -s, 
M=- v@v+---I 

2 2 
(2.13) 

and corresponds to uniaxial distributions with director along v and any sE in 
[ -3,1]. In the state space, they are represented by points on the axis ofthe cone 
C, the line that joins the centres of all the circles described above. 

(2) nE = n and A, = i l- (that is, sp = 1 - 3s,). Now M corresponds to all uniaxial 
nematics that have a positive sE and the director in the plane orthogonal to v. 
Within C,  they are represented by points on the surface of another cone which 
shares the base of C, and whose vertex is at the height s,=$ 

(3) nE=n, and &=A+ (that is, sp=3sv- 1). Here n, is the vector orthogonal to 
both v and n; notice that sE is now negative. Within C,  the states are represented 
by points on the cone opposite to that where the members of family (2) lie. 

In short, these families group all the uniaxial distributions in which the director is 
either the normal v or a vector in the plane orthogonal to it. The fact that conical 
anchoring conditions, where the director makes an angle different from both 0 and 4 2  

I sv 

b l  
Figure 2. 
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On surface biaxiality 485 

with the normal, have seldom been observed in uniaxial nematics may support our 
requirement (1.8). If this requirement must hold, conical anchorings cannot even exist 
for uniaxial nematics, in the sense that they should be interpreted properly as biaxial 
states. (Here by conical anchoring we mean a boundary condition where only the angle 
between the director and the normal to the bounding surface is prescribed, and so the 
alignment is free to be along any generator of a cone.) 

Finally, we note that the vertex common to both inner cones, i.e. the point such that 
s,=+ and sp=O, represents the isotropic state with M=iI. 

3. Equilibrium in the presence of an electric field 
We will study now the effect of an electric field applied to a nematic whose biaxial 

states are represented by a tensor M as in formula (2.10). We confine attention to fields 
applied either along the vector v or in any direction orthogonal to it, because we want 
to preserve the symmetry which has led us to equation (2.10). We presume that the state 
cannot be described simply through equation (2.10), if E is not directed as a proper 
vector of R,. 

3.1. Planar electric Jield 
We consider the problem of minimizing the free energy in (1.14) within the special 

class of order tensors (2.10) when also M,, the order tensor preferred on the boundary, 
has been chosen in that class. In the frame (el, e2, v), we write n = (cos $, sin $, 0) and 
take first the electric field E as parallel to e,. 

Rescaling the function in equation (1.14) so as to make it dimensionless, we get 

F[M] =tr((M-Mo)2)-kE.ME, (3.1) 

where 

with 

no = (cos $,, sin $o, 0); (3.3) 

k is the positive constant 

By elementary computations, equation (3.1) can be given the form 

F(s,, sp, $1 =$by - s,J + +(s; + s$) - spspo cos 2($ - $0) - a( 1 - s, + sp cos 2l+b), (3.5) 

where c1 is given by 

kE 
2 

a:=----. 

We must find the absolute minimizer of 5- in the set C of the admissible states. 
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486 P. Biscari et al. 

The equilibrium equations in the interior of C are 
a 9  ci -_ - s, - sv0 +- = 0, 
as, 3 

-= sp - spo cos 2($ - $0) - a cos 2$ = 0, a 9  
as, 

} (3.7) 

-= 2sp[(a + spo cos 21j~) sin 21// - spo sin 2+0 cos 2$] = 0, 
a 9  
a* 

and so the equilibrium values of s,, sp and $ are, respectively, 

(3.8) 

a 
3 

s, EQ (a)=s,o--, 

~ : ~ ( a )  = J[s%, sin2 2$0 +(a + spo cos 21,b~)~], 

spo sin 29b0 
$EQ(a) = 3 arctg 

a + sp0 cos 2$,‘ 

The main features of these solutions for different values of sv0, spo, and t j 0 ,  as they 
occur with increasing a, are as follows. Clearly, for a=O the equilibrium state is 
represented in the cone by the point (sv0, spo, t j 0 ) ,  whence for a > 0 it starts a trajectory of 
equilibrium solutions described by equations (3.8). 

The first equation in (3.8) tells us that the system is driven towards the plane (a ,  b) as 
a increases; the second and the third remain valid only as long as the point (sFQ, sFQ, t,bEQ) 
remains inside the cone. For large values of a, the evolution is different depending on 
whether the equilbrium point hits first the base or the lateral surface of the cone. 

In the former case, the state evolves on the plane and the complete description of the 
trajectory of the equilibrium point is given by 

sfQ(a)=max {~ ,~ -a /3 ,0 ) ,  

sFQ(a) = min {J[s,Zo sin2 2$0 +(a + spo cos 21,b~)~], 1 ), 

spo sin 2i,bO 
@“Q(a)=&arctg 

01 + sp0 cos 2Ij0. 

> (3.9) 

In the latter case, the constrained minimum problem for 9 on the cone has a 
slightly different solution: $EQ(a) is the same as before, but 

(3.10) 

for every a> di,, where di0 is the value of a for which the equilibrium point in equations 
(3.8) reaches the lateral surface. 

I sFQ(a) = max (+[syo - a/3 + 1 - J [ s i o  sin2 2t,bO +(a + spo cos 2ij0)’]], 01, 

sfQ(a) = 1 - sfQ(a), 

Some important features of these solutions deserve notice: 

(1) For any starting point (sv0, spa, t,b0), the equilibrium trajectory remains in the 
plane b = constant until it reaches the circumference on the base of the cone, as 
can be easily checked from the equations 

bEQ(a) =+sFQ(a) sin 2 1 j ~ ~ ( a )  =ispo sin 21,b~. (3.1 1) 

Moreover, the trajectory of the equilibrium point on that plane is the line 
2sy+a=constant, as long as it remains in the interior of the cone. 
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Figure 3. 

(2) There are two regions within the cone whence two different types of 
equilibrium trajectories start. Those starting from the one region hit the lateral 
surface first, while those starting from the other hit the base of the cone first. 
These two regions are adjacent and separated by the surface represented by the 
equations 

9s; + 6s,sp cos 2$ + si = 1. (3.12) 

In the variables (a, b, s,) such an equation becomes simply 

( 4 ~ , + 2 ~ i - I ) ~ + 4 b ~ = 1 ,  (3.13) 

and represents a cylinder of radius 3, with axis along the line 

b=O, 

4sV+2a=1. 
(3.14) 

This cylinder (see figure 3); is tangent to the two inner cones shown in figure 2, 
and leaves the lower one entirely under it and the upper one entirely above. 

(3) Among the equilibrium trajectories that start from a uniaxial state, only those 
with optic axis nE parallel to the electric field remain uniaxial for all values of 
the applied field. A peculiar transition takes place if the initial state is uniaxial 
with nE on the plane, at right angles with the applied field, and sE > 0. All the 
equilibrium trajectories starting from these points, which lie on the intersection 
ofthe lower inner cone with the plane b = 0, are characterized by a discontinuity 
in the angle $, which jumps from 71/2 to 0 when the trajectory intercepts the line 
sp = 0, i.e. when 

~ = . Y , O  : = 1 - 3 . ~ ~ 0 .  (3.15) 
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488 P. Biscari et al. 

3.2. Normal electric jield 
When E = Ev, the solution is much easier to find: the free energy becomes 

F(sw s p ,  $) =%s, - s,J2 + &$ + $0) - sPsp0 cos 2($ - $0) -  CIS^, (3.16) 

and possesses the following equilibrium configurations 

if addi,, 

if 
if a> a",, 

2a + 1 - sp0) dil 6 CI 6 a",, 

(3.17) 
if crddi,, i t-sfQ(a) if aadi,, 

s;Q(a)= 'Po 

*EQ(.) = $0, 

where 

oi, : = 31 - s,,, -spO) and a", : = 3 3  - 3sV0 +spO). (3.18) 

The main feature of these solutions is that every trajectory in the cone C reaches the 
vertex at CI = a",, in contrast with the preceding case, when only the trajectories starting 
from states with $0 equal to 0 or 4 2  succeed in reaching the point with s, = 0 and $ = O  
for a finite value of CI. 

4. Conclusions 
From the results of our analysis we draw the following qualitative conclusions, 

perhaps of interest for the experimentalist. 
We have studied the effect of an electric field E on a thin layer of nematic liquid 

crystal resting on a plate treated so as to induce a preferred uniaxial state with optic axis 
nE parallel to the layer and degree of orientation sE>0. 

When E and nE are parallel, the state of the liquid crystal remains uniaxial for all 
values of the strength of E. When E is not parallel to nE, but still lies in the plane of the 
layer, it affects the molecular alignment in two different ways: the induced 'change 
depends on whether the angle $0 between E and nE is greater than 71/4 or not. In both 
cases the state becomes biaxial as soon as the field is applied. 

Suppose that O<$,<z/4. As the strength E of the electric field increases, one 
proper vector of the molecular order tensor M in the plane of the layer tends to become 
parallel to E, while the scalar order parameters sp and sv defined above exhibit opposite 
behaviour: the former increases while the latter decreases. If n/4 < $,, < n/2, the effect of 
increasing E is as before on s,; however, now sp first decreases and then increases, but 
never vanishes. Finally, if $to = n/2, both sp and s, behave as before, but now the former 
vanishes for a critical value of E for which, in addition, the proper vectors of M in the 
plane of the layer suffer a sudden rotation of angle 71/2 about the axis normal to the 
layer. 

We thank S. Faetti for having provided the germ of the idea which led us to 
formulate the notion of surface biaxiality, M. Nobili for having suggested the specific 
problem treated here, and L. Fronzoni and A. Di Garbo for discussion on an early stage 
of this work. 
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